
Calculators may be used in this examination

provided they are not capable of being used

to store alphabetical information other than

hexadecimal numbers

School of Computer Science

LI Operating Systems and Systems Programming

Main Summer Examinations 2023

Time allowed: 2 hours

[Answer all questions]

– 1 – Turn Over

Non-alpha only

Note

Answer ALL questions. Each question will be marked out of 20. The paper will be marked

out of 80, which will be rescaled to a mark out of 100.

Question 1

(a) The code below is intended to launch ten threads with the integers 1 through 10

inclusive. However, when the code is executed, it does not print the anticipated

results, can you explain why? (note: the anticipated output is printing the numbers

from 1 through 10 e.g, 1235789 10 6 4)

1 #include ¡pthread.h¿

2 void * myfunc(void * arg) –

3 int i = * ((int *) arg);

4 printf(”%d ”, i);

5 pthread˙exit(NULL);

6 ˝

7 int main() –

8 int i;

9 pthread˙t tid;

10 for (i = 1; i ¡ 11; i++) –

11 pthread˙create(& tid, NULL, myfunc, & i);

12 ˝

13 ˝

[4 marks]

(b) Modify the code in a) to correct the inconsistency so that the intended results are

displayed correctly. Briefly, explain your logic. [8 marks]

(c) The insert C function below inserts a new element into a singly link lists to the end

of a list. Modify the insert() function to an enqueue() function, which inserts nodes

into a priority queue by priority. Assume that each node has a priority field. Note:

A priority queue is a (singly) link list ordered by priority, with high priority values in

front. In a priority queue, nodes with the same priority are ordered First-In-First-Out

(FIFO). Briefly explain your logic via commenting your code.

Use the following signature for the enqueue function:

int enqueue(NODE **queue, NODE *p)

– 2 – Turn Over

Non-alpha only

1 void insert(NODE **list, NODE *p)

2 –

3 NODE *q = *list;

4 if (q == 0)

5 *list = p;

6 else–

7 while (q-¿next)

8 q = q-¿next;

9 q-¿next = p;

10 ˝

11 p-¿next = 0;

12 ˝

[8 marks]

Question 2

The following code represent thread-unsafe stack implementation:

1 #define STACK˙SIZE 20

2 int count;

3 double values[STACK˙SIZE];

4 void push(double v) –

5 values[count++] = v;

6 ˝

7 double pop() –

8 return values[--count];

9 ˝

10 int is˙empty() –

11 return count == 0;

12 ˝

(a) Based on your understanding of the above code, which function(s) in the above

stack implementation are thread-unsafe and briefly explain why the data structure

is an inconsistent state? Support your answer with one example. [5 marks]

(b) A candidate ‘solution’ for the thread-unsafe stack implementation is shown below.

However, the solution contains shortcoming(s), Identify and explain the error(s) may

accord.

– 3 – Turn Over

Non-alpha only

1 #define STACK˙SIZE 20

2 int count;

3 double values[STACK˙SIZE];

4 pthread˙mutex˙t m1 = PTHREAD˙MUTEX˙INITIALIZER;

5 pthread˙mutex˙t m2 = PTHREAD˙MUTEX˙INITIALIZER;

6 void push(double v) –

7 pthread˙mutex˙lock(& m1);

8 values[count++] = v;

9 pthread˙mutex˙unlock(& m1);

10 ˝

11 double pop() –

12 pthread˙mutex˙lock(& m2);

13 double v = values[--count];

14 pthread˙mutex˙unlock(& m2);

15 return v;

16 ˝

17 int is˙empty() –

18 pthread˙mutex˙lock(& m1);

19 return count == 0;

20 pthread˙mutex˙unlock(& m1);

21 ˝

[8 marks]

(c) Update the code in b) so the stack implementation will become thread-safe. Briefly,

explain your logic. [7 marks]

– 4 – Turn Over

Non-alpha only

Question 3

(a) What is a context switch? Why is it important for the operating system to minimise

the number of context switches? [4 marks]

(b) A multi-user system used to work well, with low response times and good throughput.

Now many users use a package for automatic program verification, and as a result

the response time is high, and throughput low. How would you distinguish between

overloaded CPU, thrashing and overused disk as a possible reason? [4 marks]

(c) A webserver for an e-commerce shop is serving several kinds of requests. The first

kind consists of rendering large images, which is computationally expensive and can

happen in the background. The second kind is a preview of the list of items for sale,

which needs to be fast. These preview requests are computationally inexpensive but

use lots of I/O. The third kind are purchase requests which are computationally

inexpensive and use a moderate amount of I/O. Assume the system is highly loaded.

(i) Describe the effects of using each of FCFS, Round Robin and priority scheduling

strategy in this scenario. [9 marks]

(ii) Which of the three scheduling strategies mentioned in part (i) would you choose

for this scenario? Justify your answer. [3 marks]

– 5 – Turn Over

Non-alpha only

Question 4

(a) Why is it important that critical sections in kernel code take as little time as possible?

[6 marks]

(b) Games programmers would like to issue commands to the graphics card directly,

bypassing the operating systems. What are the effects of this for stability and

security? [6 marks]

(c) Consider the following kernel code fragment:

1 struct messageList –

2 char *message;

3 struct messageList *next;

4 ˝;

5

6 struct messageList *msgList = NULL;

7 int msgSize = 0; // the total size of all messages

8

9 // Called as part of a system call.

10 // removes message from list and copies it into buffer.

11 int removeMessage (char *buffer, size˙t length) –

12 // buffer is pointer to user space

13 memcpy(buffer, msgList-¿message, length);

14 msgList = msgList-¿next;

15 msgSize = msgSize - length;

16 return length;

17 ˝

18

19 // Called as part of a system call.

20 // adds message from buffer to message list.

21 int addMessage (const char *buffer,

22 // buffer is pointer to user space

23 size˙t length, // size of the buffer

24 loff˙t offset) –

25

26 memcpy(msgList-¿message, buffer, length);

27 msgSize = msgSize + length;

28 return length;

29 ˝

This code is part of a device driver for a character device. The intention is that the

driver stores a list of messages. The procedures removeMessage and addMessage

– 6 – Turn Over

Non-alpha only

are called as part of a system call whenever a message should be removed from and

added to this list, respectively.

This code compiles but does not work as intended. It contains errors not necessarily

limited to memory management and concurrency. Identify the errors and suggest

a remedy. Your solution should maximise the degree of concurrency. For critical

sections, it is enough to indicate the beginning and end of a critical section, and

whether you would use semaphores or spinlocks. [8 marks]

– 7 – End of Paper

Do not complete the attendance slip, fill in the
front of the answer book or turn over the
question paper until you are told to do so

Important Reminders

• Coats/outwear should be placed in the designated area.

• Unauthorised materials (e.g. notes or Tippex) must be placed in the

designated area.

• Check that you do not have any unauthorised materials with you
(e.g. in your pockets, pencil case).

• Mobile phones and smart watches must be switched off and
placed in the designated area or under your desk. They must not
be left on your person or in your pockets.

• You are not permitted to use a mobile phone as a clock. If you have
difficulty seeing a clock, please alert an Invigilator.

• You are not permitted to have writing on your hand, arm or other
body part.

• Check that you do not have writing on your hand, arm or other body
part – if you do, you must inform an Invigilator immediately

• Alert an Invigilator immediately if you find any unauthorised item
upon you during the examination.

Any students found with non-permitted items upon their person
during the examination, or who fail to comply with Examination
rules may be subject to Student Conduct procedures.

LI Operating Systems and Systems Programming Non-alpha only

